### Layout Pattern Generation and Legalization with Generative Learning Models

Xiaopeng Zhang<sup>1</sup>, James Shiely<sup>2</sup>, Evangeline F.Y. Young<sup>1</sup> <sup>1</sup>The Chinese University of Hong Kong <sup>2</sup>Synopsys Inc.





# Biography

- Xiaopeng Zhang
- The Chinese University of Hong Kong
- <u>xpzhang@cse.cuhk.edu.hk</u>

He is a postgraduate student studying for his
Ph.D. degree in the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, under the supervision of Prof.
Evangeline F.Y. Young.

• His current research interest includes machine learning in physical design and design for manufacturability.



### Outline

- Background & Introduction
- Algorithms
- Experimental Results
- Conclusion

## Outline

- Background & Introduction
- Algorithms
- Experimental Results
- Conclusion

### Application of Pattern Generation

• Hotspot detection and fix

. . . . . .

- Working in early technology node development
- Training large deep learning models



Parts of an example design layout <sup>[1]</sup>



Examples of layout patterns.

### **Related Works**

- Generating new patterns by rotation, flipping and moving edges on existing patterns (limited productivity and diversity)
- Guiding a random generator to explore new territories of the design space (complex manual guidance, limited diversity)
- Learning-based techniques (violating design rules, hardly working in complex two-dimensional layouts)
- Previous works didn't consider the style of generated patterns.



- Design a generative learning-based pattern generation framework which can generate realistic two-dimensional patterns with little manual guidance.
- Develop a learning-based legalization tool to fix the generated patterns with DRC violations.
- Build a model to check pattern styles and filter out unrealistic generated patterns.

# Satisfying Design Rules



> *Space* represents the distance between two adjacent polygons.

- > Width measures the shape size in one direction.
- > Area denotes the area of a polygon.

A layout pattern is legal if and only if all these measurements are not less than some given thresholds.

### Squish pattern representation



|                                   | [0]                   | 1                     | 0                     | 1]                      |  |
|-----------------------------------|-----------------------|-----------------------|-----------------------|-------------------------|--|
| $P_T =$                           | 0                     | 1                     | 0                     | 1                       |  |
|                                   | 0                     | 1                     | 0                     | 0                       |  |
|                                   | 1                     | 1                     | 0                     | 0                       |  |
| _                                 |                       |                       |                       | _                       |  |
| $\delta_x = [\lambda$             | $x_1$                 | $x_2$                 | $x_3$                 | $x_4$                   |  |
| $\delta_y = [$                    | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> | <i>y</i> <sub>4</sub> ] |  |
| (b) Squish topology and geometry. |                       |                       |                       |                         |  |

- storage-efficient (2048\*2048 -> 128\*128)
- ➤ lossless
- conducive to convolutional neural network models

## **Evaluation Metric**

For checking the quality of the generated patterns:

**Definition 1.** (Pattern Validity). The pattern validity, denoted as V, is the proportion of realistic patterns to the total patterns, as shown in Equation (1),  $V = \frac{The \ number \ of \ realistic \ patterns}{The \ number \ of \ total \ patterns}.$ (1)

### For checking if the generated patterns are diverse :

**Definition 2.** (*Pattern Diversity*). *The pattern diversity, denoted as H, is the Shannon entropy of the pattern complexity sampled from the pattern library, as shown in Equation* (2),

$$H = -\sum_{i} \sum_{j} P(c_{xi}, c_{yj}) \log P(c_{xi}, c_{yj}), \qquad (2)$$

where  $P(c_{xi}, c_{yj})$  is the probability of a pattern with complexities of  $c_{xi}$  and  $c_{yj}$  sampled from the pattern library.

### Problem Statement

**PROBLEM** 1. (Pattern Generation) Given a set of actual IC layout patterns and design rules, the objective of pattern generation is to generate a legal pattern library such that the pattern diversity and the number of unique realistic patterns in the library are maximized.

# Outline

- Background & Introduction
- Algorithms
- Experimental Results
- Conclusion

### Overview



The overall flow of *CU* pattern generation and legalization framework (CUP)

# Pattern Topology Generation



The overall flow of *CU* pattern generation and legalization framework (CUP)

### Pattern Topology Generation



# Variational Convolutional Auto-Encoder (VCAE)



# Variational Convolutional Auto-Encoder (VCAE)



Kullback-Leibler (KL) divergenceObjective function:min
$$D_{KL}(\mathcal{N}(\mu, \sigma^2) || \mathcal{N}(0, \bar{I})) + \lambda || P - P' ||_F^2,$$
s.t. $\tilde{l} = E^G(P, W_E),$  $\mu = f_R^{\mu}(\tilde{l}, W_R^{\mu}),$  $\sigma = f_R^{\sigma}(\tilde{l}, W_R^{\sigma}),$  $l = \mu + \sigma \odot \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \bar{I}),$  $P' = D^G(l, W_D).$ 

# Generating New Topology



Generate new pattern topology by random Gaussian perturbation  $\Delta l$ :

$$P' = D^G(l + \triangle l, W_D),$$

s.t. 
$$\Delta l_i \sim \mathcal{N}(0, c^2), \quad i = 1 \cdots N$$

# Network Configuration of VCAE

| Encoder                             |                            | Decoder                                |                           |  |  |
|-------------------------------------|----------------------------|----------------------------------------|---------------------------|--|--|
| Layer                               | Output Size                | Layer                                  | Output Size               |  |  |
| Input                               | $1 \times 128 \times 128$  | Latent                                 | $4 \times 16 \times 16$   |  |  |
| Conv-IN-ReLU                        | $64 \times 128 \times 128$ | Deconv-IN-ReLU                         | $32 \times 16 \times 16$  |  |  |
| Conv-IN-ReLU                        | $128 \times 64 \times 64$  | Deconv-IN-ReLU                         | 64 	imes 16 	imes 16      |  |  |
| Conv-IN-ReLU                        | $256 \times 32 \times 32$  | Deconv-IN-ReLU                         | $128 \times 16 \times 16$ |  |  |
| ResBlock                            | $256 \times 32 \times 32$  | ResBlock                               | $128 \times 16 \times 16$ |  |  |
| Conv-IN-ReLU                        | $256 \times 16 \times 16$  | ResBlock                               | 128 	imes 16 	imes 16     |  |  |
| Conv-IN-ReLU                        | $128 \times 16 \times 16$  | Deconv-IN-ReLU                         | 256 	imes 16 	imes 16     |  |  |
| ResBlock                            | $128 \times 16 \times 16$  | Deconv-IN-ReLU                         | 256 	imes 32 	imes 32     |  |  |
| ResBlock                            | $128 \times 16 \times 16$  | ResBlock                               | $256 \times 32 \times 32$ |  |  |
| Conv-IN-ReLU                        | $64 \times 16 \times 16$   | Deconv-IN-ReLU                         | 128 	imes 64 	imes 64     |  |  |
| Conv-IN-ReLU                        | $32 \times 16 \times 16$   | Deconv-IN-ReLU                         | 64 	imes 128 	imes 128    |  |  |
| Conv-IN-ReLU                        | $4 \times 16 \times 16$    | Deconv-Tanh                            | $1 \times 128 \times 128$ |  |  |
| <b>Reparameterization</b> for $\mu$ |                            | <b>Reparameterization</b> for $\sigma$ |                           |  |  |
| Layer                               | Output Size                | Layer                                  | Output Size               |  |  |
| Input                               | 1024                       | Input                                  | 1024                      |  |  |
| Linear                              | 1024                       | Linear                                 | 1024                      |  |  |

# Pattern Topology Legalization



The overall flow of <u>CU pattern generation and legalization framework (CUP)</u>

# Generated Topologies from VCAE

**Generated topologies:** 

### **Blurry flaws!**







Generated layout patterns:

### **DRC violations!**







# Pattern Topology Legalization

- Motivation: eliminate blurry flaws and DRC violation risks by reducing the reconstruction loss from VCAE.
- Method: LegalGAN, a generative model based on CGAN

### LegalGAN

LegalGAN: legalization model based on CGAN



#### Basic idea: eliminate blurry flaws and DRC violation risks by reducing the reconstruction loss from VCAE.

### LegalGAN

LegalGAN: legalization model based on CGAN



Architecture of LegalGAN

# **Overall Flow in Testing Stage**



The flow of pattern topology generation and legalization in the testing stage.

# Visualization of the LegalGAN process

| Existing | Generated | Legalized patterns       Iteration 1     Iteration 3     Iteration 5     Iteration 7     Iteration 9 |  |  |  |  |
|----------|-----------|------------------------------------------------------------------------------------------------------|--|--|--|--|
|          |           |                                                                                                      |  |  |  |  |
|          |           |                                                                                                      |  |  |  |  |

### Pattern Style Detection



The overall flow of CU pattern generation and legalization framework (CUP)

# Pattern Style: Realistic and Unrealistic

A question: Must a DRC-clean pattern be a realistic pattern?



Parts of an actual IC layout



# Pattern Validity

**Realistic pattern:** a pattern that closely resembles the actual layout and shares the same inherent style with the layout.

For checking the quality of the generated patterns:

**Definition 1.** (Pattern Validity). The pattern validity, denoted as V, is the proportion of realistic patterns to the total patterns, as shown in Equation (1),  $V = \frac{The \ number \ of \ realistic \ patterns}{The \ number \ of \ total \ patterns}.$ (1)

How to detect the pattern style?

Basic idea: anomaly detection based on CGAN.

### Pattern Style Detection



Architecture of pattern style detection model.

 $L_{enc} = \mathbb{E}_X \left[ ||G_E(X) - E(G(X))||_2 \right]$  $L_{con} = \mathbb{E}_X \left[ ||X - G(X)||_1 \right]$  $L_{adv} = \mathbb{E}_X \left[ ||f(X) - f(G(X))||_2 \right]$ 

**Objective function:** 

$$\min_{G_E,G_D,E} \max_{D} L_{adv} + \alpha \cdot L_{con} + \beta \cdot L_{enc}$$

### Pattern Style Detection



Architecture of pattern style detection model.

For a new pattern, the pattern anomaly score:

$$score(\hat{x}) = ||G_E(\hat{x}) - E(G(\hat{x}))||_1$$

#### The pattern is realistic if:

 $score(\hat{x}) < T_{1}$ 

# Outline

- Background & Introduction
- Algorithms
- Experimental Results
- Conclusion

# Effectiveness of LegalGAN



> 97.39% DRC violations are removed (from 688584 to 17959).

> The proportion of legal patterns in the total changes from 2.1% to 84.5%

## Results on Pattern Diversity

| Set/Method          | All       | patterns      | Legal patterns |               |  |
|---------------------|-----------|---------------|----------------|---------------|--|
| Set/Wethou          | Pattern # | Diversity (H) | Pattern #      | Diversity (H) |  |
| Existing patterns   | 13869     | 10.7767       | -              | -             |  |
| Basic patterns      | 100       | 6.6039        | -              | -             |  |
| CAE                 | 100000    | 4.5875        | 19             | 3.7871        |  |
| VCAE                | 100000    | 10.9311       | 2126           | 9.9775        |  |
| CAE+LegalGAN        | 100000    | 5.8465        | 3740           | 5.8142        |  |
| CUP (VCAE+LegalGAN) | 100000    | 9.8692        | 84510          | 9.8669        |  |

<sup>1</sup> Pattern# means the number of patterns.

 $\succ$  CUP generate the most new patterns with high pattern diversity H = 9.8669

# Validation of Style Detection Model



| Dattern Set          | Pottorn # | Pattern Validity (V) |         |         |  |
|----------------------|-----------|----------------------|---------|---------|--|
| T atterni Set        |           | <i>T</i> = 0.6       | T = 0.7 | T = 0.8 |  |
| Testing patterns     | 3000      | 0.6493               | 0.8485  | 0.9306  |  |
| Random patterns      | 3000      | 0                    | 0       | 0.007   |  |
| Distraction patterns | 3000      | 0.0119               | 0.0143  | 0.0246  |  |
| 0.95% distraction    | 3000      | 0.5981               | 0.8236  | 0.9198  |  |
| 3.81% distraction    | 3000      | 0.4227               | 0.6943  | 0.8536  |  |
| 8.58% distraction    | 3000      | 0.0710               | 0.2204  | 0.4371  |  |
| 15.27% distraction   | 3000      | 0.0058               | 0.0365  | 0.1041  |  |
| 61.04% distraction   | 3000      | 0.0003               | 0.0041  | 0.0191  |  |

The sets of more realistic patterns can get larger pattern validity score, which means the trained pattern style detection model has the ability of checking the layout style.

### Results on Pattern Validity

| Set/Method          | Pattern # | Pattern Validity (V) |         |         |  |
|---------------------|-----------|----------------------|---------|---------|--|
| Set/ Wiethou        |           | <i>T</i> = 0.6       | T = 0.7 | T = 0.8 |  |
| Testing patterns    | 3000      | 0.6493               | 0.8485  | 0.9306  |  |
| CAE+LegalGAN        | 2126      | 0.0003               | 0.0027  | 0.0167  |  |
| CUP (VCAE+LegalGAN) | 84510     | 0.5430               | 0.7840  | 0.9057  |  |

> CUP can generate a pattern library with high pattern validity.

# Outline

- Background & Introduction
- Algorithms
- Experimental Results
- Conclusion



➢ We propose a novel two-stage generative learning-based pattern generation framework including pattern topology generation and legalization, which has the capability of generating realistic patterns with little manual guidance.

➤A pattern style detection tool is designed to check pattern styles and filter out unrealistic generated patterns.

Experimental results demonstrate that our framework has the capability of generating realistic legal patterns with high pattern diversity.

