
Layout Pattern Generation and Legalization with Generative
Learning Models

Xiaopeng Zhang

The Chinese University of Hong Kong

NT, Hong Kong SAR

xpzhang@cse.cuhk.edu.hk

James Shiely

Synopsys Inc.

CA, USA

Jim.Shiely@synopsys.com

Evangeline F.Y. Young

The Chinese University of Hong Kong

NT, Hong Kong SAR

fyyoung@cse.cuhk.edu.hk

ABSTRACT

VLSI layout patterns plays an important role in various research

in Design for Manufacturing (DFM), such as optical proximity cor-

rection, lithography hotspot detection and so on. However, a large

and diverse layout pattern library is usually not available during

development stages due to the long and iterative technology life cy-

cle, which brings potential difficulties to related research and slows

down the development process. Although some previous works

managed to enlarge pattern libraries with different solutions, there

are still many challenges on generating complex DRC-clean two-

dimensional patterns with specific styles. To address this problem,

we explored the capability of generative machine learning mod-

els to learn the inherent distribution of a given set of non-trivial

layouts for synthesizing diverse and realistic layout patterns with

little manual guidance. For this purpose, we propose CUP, the 𝐶𝑈
𝑝attern generation and legalization framework, which consists of

two learning-based modules for pattern topology generation and

design rule legalization respectively. Experiments show that CUP

can generate diverse legal layout patterns which are comparable to

actual design layouts in terms of resemblance in style and validity.

1 INTRODUCTION

VLSI layout patterns are significant resources for flows of vari-

ous design for manufacturability (DFM) research, such as optical

proximity correction (OPC) [7, 10, 13, 15, 26], layout hotspot detec-

tion [5, 27, 30, 33, 34], pattern matching [4], lithography simula-

tion [16, 17, 31] and so on. However, VLSI layout pattern libraries are

very often not available for research or testing due to the long and

iterative technology life cycle, especially in the initial stage, which

may slow down the technology node development [10]. Moreover,

for learning-based methods which are widely adopted to lithogra-

phy and hotspot detection applications, a large number of layout

patterns are needed for training. Non-diversified pattern libraries
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will result in underlying fallacies and pitfalls in these learning-based

works [21]. Therefore, research on synthesizing diversified VLSI

layout pattern libraries is important for DFM solutions.

Some efforts have been made to enlarge existing layout libraries

and to increase layout diversity. The works [21, 22, 32] gain new

patterns by rotation, flipping and moving edges based on a few

existing patterns for enhancing hotspot detection. The work [10]

guides a random generator to explore new territories of the design

space. These methods are coupled with complex manual guidance

and can hardly increase the layout diversity due to its deterministic

strategy. Some works build diversified pattern libraries based on

learning-based techniques, of which one representative work is

[28]. The authors proposed a pattern generation framework with

transforming convolutional auto-encoder, and the work is applied

only to unidirectional on-track shapes. It is still a big challenge

to develop diversified and DRC-clean pattern libraries of a large

number of realistic patterns for complex two-dimensional layouts.

For this target of two-dimensional pattern generation, we pro-

pose CUP, a novel framework based on generative learning tech-

niques for pattern topology generation and legalization. In the gen-

eration stage, we develop a variational convolutional auto-encoder

(VCAE) architecture, mapping existing pattern topologies into la-

tent vectors on which Gaussian perturbation is applied to generate

new topologies with realistic styles. After that, we will address the

legality issue of the generated patterns, which is another challeng-

ing task. Previous pattern generation works filter out patterns with

DRC violations [20], which will reduce the efficiency of the pattern

generation process. In this paper, based on conditional generative

adversarial nets (CGAN) [18], we design LegalGAN, a legalization

model that transforms generated samples from blurry patterns to

smooth ones, which greatly reduces DRC violation risks.

Finally, considering that we target at generating realistic layout

patterns which should closely resemble actual IC layouts besides

being legal, we design a pattern style detection tool based on an

adversarial auto-encoder capturing the layout style in both the

pattern space and the latent vector space.

The main contributions of this paper are listed as follows:

• We propose a novel two-stage generative learning-based

pattern generation framework including pattern topology

generation and legalization, which has the capability of learn-

ing inherent distributions of two-dimensional layouts and

generate realistic patterns with little manual guidance.

• A VCAE architecture is designed for efficient generation of

realistic pattern topologies by Gaussian perturbation.

• A pattern legalization model based on CGAN is developed

to legalize the generated pattern topologies to reduce DRC

violation risks with little manual guidance.

https://doi.org/10.1145/3400302.3415607
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• Based on an adversarial auto-encoder, a pattern style detec-

tion tool is designed to check pattern styles and filter out

unrealistic generated patterns.

• Experimental results demonstrate that our framework has

the capability of generating realistic legal patterns with high

pattern diversity.

2 PRELIMINARIES

2.1 Squish Pattern Representation
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Figure 1: Squish pattern representation.

Squish pattern [8] is an efficient representation in which a layout

is divided into pattern topology and geometric information. Squish

patterns are used in our pattern generation and legalization process,

because squish pattern representation is lossless, storage-efficient

and conducive to convolutional neural network models. It allows

us to avoid a lot of pixel-level computations.

As shown in Figure 1a, squish pattern representation splits a

layout into grids by a set of scan lines that walk along the edges of

the polygons. These grids are then described by a topology matrix

𝑃 and two geometry vectors 𝛿𝑥 and 𝛿𝑦 . As depicted in Figure 1b,

each element of 𝑃 is either a 0 or 1 that indicates space or polygon

respectively, while elements of 𝛿𝑥 and 𝛿𝑦 represent the respective

column widths and row heights. To make squish patterns compat-

ible with convolutional neural networks that require matrices or

tensors as input, all layout patterns are split into squish patterns

with the same size by the adaptive method of [29].

2.2 Pattern Generation Problem

Space Width Area

Figure 2: Layout geometry concepts for DRC rules.

In this subsection, we introduce some geometric concepts and

metrics to define the pattern generation problem. Our target is

to design a tool to generate diverse and realistic layout patterns

that are both legal and closely resemble actual IC layouts. Figure 2

shows some common geometric concepts to describe layout design

rules. Space represents the distance between two adjacent polygons,

Width measures the size of a shape in one direction, and Area
denotes the area of a polygon. A layout pattern is legal if and only

if all these measurements are not less than some given thresholds.

With appropriate values of the thresholds, a legal pattern will have

much reduced DRC violation risk.

We also need to discuss the concept of diversity. In [28], the term

pattern complexity of a given layout in squish pattern representation,
denoted by a pair of values (𝑐𝑥 , 𝑐𝑦), is computed as the numbers

of scan lines subtracted by one along the x-axis and the y-axis

respectively. Based on this, the pattern diversity (denoted by 𝐻 ) can

be defined by Shannon Entropy [24] to measure the diversity of a

given pattern library as follows. Note that a larger 𝐻 means that

the patterns in the library are more diversified.

Definition 2.1. (Pattern Diversity) Pattern diversity, denoted by

H, is the Shannon entropy of the pattern complexity sampled from

the pattern library, as computed in Equation 1,

H = −
∑
𝑖

∑
𝑗

𝑃 (𝑐𝑥𝑖 , 𝑐𝑦 𝑗 ) log 𝑃 (𝑐𝑥𝑖 , 𝑐𝑦 𝑗 ), (1)

where 𝑃 (𝑐𝑥𝑖 , 𝑐𝑦 𝑗 ) is the probability that a pattern with complexities

of (𝑐𝑥𝑖 , 𝑐𝑦 𝑗 ) is sampled from the pattern library.

With the above definitions, the pattern generation problem can

be described as follows.

Problem 1. (Pattern Generation) Given a set of actual IC layout
patterns and design rules, the objective of pattern generation is to
generate a legal pattern library such that the pattern diversity and
the number of unique realistic patterns in the library are maximized.

3 OVERVIEW

Generating non-trivial and two-dimensional layout patterns which

are diverse, legal and realistic is a challenging task for learning-

based methods. We address this problem by a flow in which pattern

generation, legalization and filtering are applied respectively.

Existing design

Extracting squish pattern

Pattern topology 
legalization

Pattern library

Pattern topology generation

Training VCAE

Perturbing latent space

Checking style & filtering

Figure 3: An overview of our CUP.

An overview of our framework is shown in Figure 3. First, we

extract the squish patterns from the existing designs, where the

layouts are divided into two compressed parts, topology and geom-

etry, as described in Section 2. Our model will learn and generate

new layout topologies while the geometric part will be maintained.

With a dataset of pattern topologies, a learning-based model is

trained to generate new topologies which are diverse and realistic

by perturbation in the latent space. A legalization tool based on

CGAN is then applied to make the generated topologies smooth

to reduce DRC violation risk. We can then obtain new layouts in

squish patterns by concatenating the generated topologies and the

geometry information. Finally, a pattern style detection tool is built

to check if the newly generated patterns are realistic, and those

non-realistic patterns can be filtered out.
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4 PATTERN TOPOLOGY GENERATION
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Figure 4: Topology generation in (a) training phase and (b)

testing phase.

4.1 Variational Convolutional Auto-Encoder

In this section, our variational convolutional auto-encoder (VCAE)

architecture is proposed that aims at generating diverse and realistic

pattern topologies. VCAE is derived from the original variational

auto-encoders (VAEs) [14] which is a group of densely connected

encoder-decoder neural networks learning the distribution of the

input for generating new ones by random sampling. In VAEs, the

encoder maps the input samples into a latent Gaussian space, where

new latent vectors are sampled by reparameterization, which are

then reconstructed back to new samples by the decoder. Besides

the schemes of VAEs, our VCAE employs additional convolutional

layers and residual blocks [11] for capturing complex topology

distribution of two-dimensional layouts.

Our VCAE architecture has an encoder-reparameterization-decoder

pipeline for feature learning and pattern reconstruction, as depicted

in Figure 4. In the training stage shown in Figure 4a, the encoder

𝐸𝐺 of the VCAE maps a pattern topology 𝑃 into a Gaussian space

with mean 𝜇 and variance 𝜎2. In this Gaussian space, the reparame-

terization block samples a new latent vector 𝑙 by 𝑙 = 𝜇+𝜎 ⊙𝜀, where
𝜀 ∼ N(0, I) and ⊙ signifies an element-wise product. After that,

the decoder 𝐷𝐺 converts the latent vector 𝑙 back into the pattern

topology space and reconstructs a topology 𝑃 ′ that are expected to

be close to 𝑃 . The objective function of the VCAE for training is as

follows:

𝑚𝑖𝑛 𝐷𝐾𝐿 (N (𝜇, 𝜎2)∥N (0, I)) + 𝜆∥𝑃 − 𝑃 ′∥2𝐹 , (2a)

𝑠 .𝑡 . ˜𝑙 = 𝐸𝐺 (𝑃,𝑊𝐸 ), (2b)

𝜇 = 𝑓
𝜇

𝑅
( ˜𝑙,𝑊 𝜇

𝑅
), (2c)

𝜎 = 𝑓 𝜎
𝑅
( ˜𝑙,𝑊 𝜎

𝑅
), (2d)

𝑙 = 𝜇 + 𝜎 ⊙ 𝜀, 𝜀 ∼ N(0, I), (2e)

𝑃 ′ = 𝐷𝐺 (𝑙,𝑊𝐷 ) . (2f)

The first part of Equation 2a aims at making the distribution with

mean 𝜇 and variance 𝜎2 close to the standard Gaussian distribution

N(0, I), where𝐷𝐾𝐿 represents the Kullback-Leibler (KL) divergence
which measures the difference between two distributions. The sec-

ond part of Equation 2a represents the reconstruction error of this

auto-encoder, where 𝜆 is a trade-off parameter and ∥ · ∥𝐹 represents

the Frobenius norm. Equation 2b and Equation 2f are the compu-

tation of the encoder and the decoder respectively, configurations

of which are described in Section 4.3. Equation 2c and Equation 2d

are reparameterization operations for 𝜇 and 𝜎 respectively, both

of which are simple linear transformations. The terms 𝜇 and 𝜎 are

trained by the encoder and the reparameterization block, and the 𝜀

is sampled from a standard Gaussian distribution. The variable
˜𝑙 is

an internal representation of the output from the encoder, while

the variable 𝑙 is the sampled latent vector with Gaussian distribu-

tion by the reparameterization block. In addition,𝑊
𝜇

𝑅
,𝑊 𝜎

𝑅
,𝑊𝐸 and

𝑊𝐷 are the trainable weights associated with the respective units.

By minimizing this objective function, the latent representation 𝑙

computed by Equation 2e is nearly in Gaussian distribution because

N(𝜇, 𝜎2) is close to N(0, I) and 𝜀 is also in Gaussian distribution.

After training, our VCAE decoder is expected to have the ability of

converting a latent vector in the Gaussian space back to a realistic

pattern topology.

4.2 New Pattern Topology Generation

Different from the random sampling in the original VAEs, we gener-

ate new pattern topologies by applying limited Gaussian perturba-

tions to the latent vector from existing pattern topologies as shown

in Figure 4b.

At this stage, the encoder 𝐸𝐺 and reparameterization block map

an existing pattern topology into a latent vector 𝑙 in a Gaussian

space, which allows perturbation by adding a random Gaussian

vector △𝑙 . Apparently the new vector 𝑙 + △𝑙 is still in Gaussian

distribution, which implies that it can be converted back to pattern

topology space by the trained decoder 𝐷𝐺 . This reconstruction

process is described by Equation 3:

𝑃 ′ = 𝐷𝐺 (𝑙 + △𝑙,𝑊𝐷 ), △𝑙𝑖 ∼ N(0, 𝑐2), 𝑖 = 1 · · ·𝑁, (3)

where each element of △𝑙 is sampled from a simple Gaussian distri-

bution with mean 0. The variance 𝑐2 is a user-defined parameter

that controls the range of perturbation. A larger variance 𝑐2 implies

a larger Gaussian perturbation, which leads to a larger difference

between the original pattern topology and the generated topologies.

In our experiments, the variance 𝑐2 is set to 0.5.

4.3 Network Architecture Configuration

Instead of having densely connected layers as in the original VAEs,

more powerful techniques, such as convolutional layers and residual

blocks, are used in our VCAE to capture complex layout topology in-

formation. Table 1 shows the detailed configurations of the encoder,

decoder and reparameterization block of our VCAE. The encoder

uses convolution layers (Conv), while the decoder employs decon-

volution layers (Deconv). Residual blocks (ResBlock) are employed

in both the encoder and decoder. Instance normalization (IN) is se-

lectively applied on certain convolutional layers, and ReLU is used

as the activation function. For computing 𝜇 and 𝜎 respectively, the

reparameterization block includes two simple linear transformation

layers, both of which have dimension sizes of 1024.
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Table 1: The network configurations of our VCAE.

Encoder Decoder

Layer Output Size Layer Output Size

Input 1 × 128 × 128 Latent 4 × 16 × 16

Conv-IN-ReLU 64 × 128 × 128 Deconv-IN-ReLU 32 × 16 × 16

Conv-IN-ReLU 128 × 64 × 64 Deconv-IN-ReLU 64 × 16 × 16

Conv-IN-ReLU 256 × 32 × 32 Deconv-IN-ReLU 128 × 16 × 16

ResBlock 256 × 32 × 32 ResBlock 128 × 16 × 16

Conv-IN-ReLU 256 × 16 × 16 ResBlock 128 × 16 × 16

Conv-IN-ReLU 128 × 16 × 16 Deconv-IN-ReLU 256 × 16 × 16

ResBlock 128 × 16 × 16 Deconv-IN-ReLU 256 × 32 × 32

ResBlock 128 × 16 × 16 ResBlock 256 × 32 × 32

Conv-IN-ReLU 64 × 16 × 16 Deconv-IN-ReLU 128 × 64 × 64

Conv-IN-ReLU 32 × 16 × 16 Deconv-IN-ReLU 64 × 128 × 128

Conv-IN-ReLU 4 × 16 × 16 Deconv-Tanh 1 × 128 × 128

Reparameterization for 𝜇 Reparameterization for 𝜎

Layer Output Size Layer Output Size

Input 1024 Input 1024

Linear 1024 Linear 1024

5 PATTERN TOPOLOGY LEGALIZATION

Due to the complexity of two-dimensional layout patterns, the pat-

terns generated by VCAE may not be legal. To repair the generated

patterns to legal ones, we propose a CGAN-based topology legal-

ization model, named LegalGAN, to eliminate DRC-violations for

given layout patterns with little manual guidance.

5.1 Motivation and Data Preparation

VAEs will suffer from blurry generation for non-trivial datasets be-

cause of the injected noise and imperfect element-wise measures [2].

Our proposed generation model VCAE, based on VAEs, also faces

the challenge of blurry flaws in generated pattern topologies, which

will increase DRC violation risk. This happens primarily due to the

reconstruction loss of the decoder, which is hard for VAE-based

models to avoid. To repair the generated topologies, we design a

legalization tool LegalGAN to transform generated samples from

blurry patterns to smooth ones. The basic idea of LegalGAN is to

eliminate blurry flaws and DRC violation risks by reducing the

reconstruction loss with CGAN techniques.

For training LegalGAN, a dataset consisting of pairs of sam-

ples corresponding to real pattern topologies and decoded pattern

topologies is needed. The real pattern topologies are those topolo-

gies 𝑃 extracted from existing layout patterns, which are also used

as input for training VCAE as shown in Figure 4a, while the decoded

pattern topologies 𝑃 ′ are the output of VCAE in Figure 4a. Due to

the reconstruction loss, the topologies 𝑃 ′ may be illegal, while those

real topologies 𝑃 are not. Hence, LegalGAN learning to transform

𝑃 ′ to 𝑃 will have the ability of repairing blurry pattern topologies

and reducing DRC violation risks by reducing the reconstruction

loss.

5.2 LegalGAN Architecture Design

Generative adversarial nets (GAN) [9] are networks that use a set

of training samples to learn their distribution and generate new

samples from the learned distribution. At the highest level, GANs

are composed of a generator and a discriminator that compete with

P’

P

GL

DL

Real

Fake

P’’=GL(P’)

Contextual loss

Real 
topology

Decoded 
topology

Figure 5: Architecture of LegalGAN.

each other. The generator 𝐺 generates fake samples based on a

random noise to fool the discriminator, while the discriminator

𝐷 tries to classify the real samples as 1 (real) and fake samples

as 0 (fake). With this competition, the discriminator guides the

generator on what are close to real samples, while also improves

itself by learning how to distinguish real samples from fake ones.

CGANs are conditional model extended from GANs. Unlike the

unconditional GANs, CGANs generate fake samples with a specific

condition rather than generic samples based on random noises [12].

Specifically, for our legalization task, with the decoded topologies

𝑃 ′ as input, CGAN requires the generated new topologies 𝑃 ′′ to
not only fool the discriminator but also to be close to the respective

real topologies 𝑃 .

Figure 5 shows the training process of our proposed LegalGAN

model based on CGAN. This model is trained to transform a de-

coded topology 𝑃 ′ to a legal one like the real topology 𝑃 . Fed with

𝑃 ′, the generator outputs a repaired pattern topology 𝑃 ′′ where
𝑃 ′′ = 𝐺𝐿 (𝑃 ′). The discriminator is responsible for classifying this

topology pair (𝑃 ′,𝐺𝐿 (𝑃 ′)) as fake, and meanwhile, it needs to re-

gard the topology pair (𝑃 ′, 𝑃) as real. Mathematically, the objective

function of the discriminator 𝐷𝐿 is given by

max

𝐷𝐿
E𝑃,𝑃 ′

[
log(𝐷𝐿 (𝑃 ′, 𝑃))

]
+ E𝑃 ′

[
log(1 − 𝐷𝐿 (𝑃 ′,𝐺𝐿 (𝑃 ′)))

]
.

(4)

On the other hand, the objective of the generator is to gener-

ate pattern topology to fool the discriminator by maximizing the

𝐷𝐿 (𝑥 ′,𝐺𝐿 (𝑥 ′)). Besides, the generator wishes that the generated
pattern topology 𝐺𝐿 (𝑥 ′) is close to the real pattern topology 𝑥 by

minimizing the contextual loss with 𝐿1 norm. The objective of 𝐺𝐿

is defined as

min

𝐺𝐿
E𝑃 ′

[
log(1 − 𝐷𝐿 (𝑃 ′,𝐺𝐿 (𝑃 ′)))

]
+ 𝛾 · E𝑃 ′

[
| |𝑃 −𝐺𝐿 (𝑃 ′) | |1

]
,

(5)

where𝛾 is a weighting parameter to trade-off the impact of different

parts of the objective function. Combining Equation 4 and Equation

5, we have the following objective function for our legalization

model,

min

𝐺𝐿
max

𝐷𝐿
E𝑃,𝑃 ′

[
log(𝐷𝐿 (𝑃 ′, 𝑃))

]
+ E𝑃 ′

[
log(1 − 𝐷𝐿 (𝑃 ′,𝐺𝐿 (𝑃 ′)))

]
+ 𝛾 · E𝑃 ′

[
| |𝑃 −𝐺𝐿 (𝑃 ′) | |1

]
,

(6)

Besides, LegalGAN shares network configurations with the image-

to-image CGAN in [12].
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In the testing phase, the trained generator repairs the generated

pattern topology 𝑃 ′ to a new topology 𝑃 ′′ with few blurry flaws

and lower DRC violation risk.

5.3 Overall Flow in Testing Stage

EG DG

Δl

GL

Many iterations

P

P’

P’’

Existing pattern New pattern

Real topology New topology

Geometry vectors

Generation Legalization

Perturbation

Figure 6: The flow of generation and legalization of CUP in

the testing stage.

We summarize the pattern topology generation and legalization

flow as shown in Figure 6, where an existing pattern is input, and

finally a legalized new pattern is output. First an input existing

pattern is transformed to a real topology 𝑃 and two geometry

vectors. Through the encoder 𝐸𝐺 and decoder 𝐷𝐺 of the trained

VCAE, a topology 𝑃 ′ is generated by applying a random Gaussian

perturbation △𝑙 in the latent representation. Then the topology 𝑃 ′

is legalized to a new topology 𝑃 ′′ by the trained generator 𝐺𝐿 of

LegalGAN. Considering the much reconstruction loss due to the

perturbation in VCAE, the trained generator 𝐺𝐿 often needs to be

recursively executed for multiple iterations, where the input is the

partially legalized topology from the previous iteration. Finally,

we concatenate the new topology 𝑃 ′′ and the original geometry

vectors to form a new smooth and realistic pattern with lower DRC

violation risk.

6 PATTERN STYLE DETECTION

6.1 Pattern Validity

(a) Realistic. (b) Unrealistic.

Figure 7: Legal patterns with (a) realistic styles and (b) unre-

alistic styles.

Previous pattern generation efforts usually evaluate a generated

layout pattern by only design rule checking. However, the features

and styles of existing design layouts are resulted from not only

design rule constraints but also inherent characteristic of their

prior procedures of the development flow, such as logic synthesis

physical design. Many DFM researches/flows need not only legal

patterns but also realistic patterns. For a specific actual IC layout, a

realistic pattern means a pattern that closely resembles the actual

layout and shares the same inherent style with the layout.

Figure 7a shows existing realistic patterns of an actual layout

from ICCAD contest 2014. Besides legal by satisfying the design

rules described in Section 2.2, these patterns share inherent features

and styles that cannot be completely described by intuitive design

rules. Meanwhile, some legal but unrealistic patterns are shown

in Figure 7b, where the leftmost two patterns are sparse ones that

satisfy nearly all common design rules, the middle two patterns

are randomly generated under the above design rules, and the

rightmost two patterns are existing patterns from another layout

with different style. All patterns in Figure 7b satisfy the design rules

in Section 2.2, but apparently they share different inherent features

and styles from the realistic patterns in Figure 7a. Note that, for

the layout of ICCAD contest 2014, the right 2 existing patterns in

Figure 7b are also regarded as unrealistic ones due to the different

layout style. It is not reasonable that a DFM model designed based

on the unrealistic patterns in Figure 7b will also work well with the

realistic patterns in Figure 7a.

For pattern generation, the generated legal layout patterns can-

not be just regarded as realistic patterns, and the legal but unrealistic

patterns should be filtered out. To evaluate how realistic the gen-

erated patterns are, we introduce a concept of pattern validity by

measuring the proportion of realistic patterns in a give pattern

library:

Definition 6.1. (Pattern Validity). The pattern validity, denoted

by V, is the proportion of realistic patterns to the total patterns, as

shown in 7,

V =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑟𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
. (7)

A good pattern generation method can develop a pattern library

with not only large pattern diversity but also high pattern validity.

6.2 Pattern Style Detection Model

Considering the fact that the inherent style of a layout is subjective

and lack of measurement, a natural question then arises: how to

evaluate the layout style of new patterns. In this section, we propose

a pattern style detection model to check if the give patterns are

realistic or not.

The pattern style detection task can be considered as an Anomaly

Detection problem [3], where a realistic pattern that conforms

to a particular layout style is regarded as normal, otherwise it’s

anomalous. Generative learning based models make great progress

in anomaly detection problems [6]. In such problems, A CGAN is

trained on normal samples only and makes the generator learn the

distribution of normal samples. Given a trained generator, when an

anomalous pattern is encoded, the generator will fail to reconstruct

abnormalities, because it has not learnt anomalous features. The

anomalous sample can then be detected by the difference between

itself and its reconstructed sample. With this basic idea, we adopt

the CGAN-based anomaly detection scheme [1] for the pattern

style detection problem.

The training process of our pattern style detection model based

on CGANs [18] is shown in Figure 8. Unlike vanilla CGANs, this

model employs an adversarial auto-encoder within an encoder-

decoder-encoder pipeline in its generator network capturing the
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Figure 8: Architecture of pattern style detection model.

layout distribution within both the pattern and latent vector space.

The additional encoder 𝐸 maps the generated pattern to its latent

representation, which is used to compute the style detection scores

for new patterns.

In Figure 8, 𝐺𝐸 , 𝐺𝐷 and 𝐸 are respectively the encoder, decoder

and the second encoder in the generator, while 𝐷 is the discrimina-

tor. First, the encoder 𝐺𝐸 encodes the input pattern image 𝑋 to a

latent vector𝐺𝐸 (𝑋 ).𝐺𝐸 (𝑋 ) is then decoded to a fake pattern𝐺 (𝑋 )
by decoder 𝐺𝐷 , where 𝐺 (𝑋 ) = 𝐺𝐷 (𝐺𝐸 (𝑋 )). After that, the second
encoder 𝐸 generates another latent vector 𝐸 (𝐺 (𝑋 )) when fed with

fake pattern𝐺 (𝑋 ). With different parametrization, 𝐸 has the same

architectural details as 𝐺𝐸 (𝑋 ). Meanwhile, the discriminator 𝐷 is

responsible for classifying the input pattern 𝑋 and the generated

pattern 𝐺 (𝑋 ) as real or fake respectively.
Our objective function consists of three loss functions which

are L𝑎𝑑𝑣 , L𝑐𝑜𝑛 and L𝑒𝑛𝑐 . On the generator side, besides fooling the

discriminator, the generator wants that the reconstructed pattern

𝐺 (𝑋 ) is close to the input pattern 𝑋 , which leads to the contextual

loss L𝑐𝑜𝑛 as follows:

L𝑐𝑜𝑛 = E𝑋 [| |𝑋 −𝐺 (𝑋 ) | |1] . (8)

Then, an encoder loss L𝑒𝑛𝑐 is applied to minimize the difference be-

tween the latent features of the input pattern and the reconstructed

one. It is formally defined as

L𝑒𝑛𝑐 = E𝑋 [| |𝐺𝐸 (𝑋 ) − 𝐸 (𝐺 (𝑋 )) | |2] . (9)

On the discriminator side, since [23] shows that feature matching

has the ability of reducing the instability of training for GANs,

we use feature matching loss [1] for adversarial learning, and up-

date 𝐺 based on the internal representation of 𝐷 . We define 𝑓 to

represent a function that outputs the internal representation of 𝐷 .

Mathematically, the adversarial loss L𝑎𝑑𝑣 is given by

L𝑎𝑑𝑣 = E𝑋 [| |𝑓 (𝑋 ) − 𝑓 (𝐺 (𝑋 )) | |2] . (10)

Combining the three loss functions, we get the following objective

function:

min

𝐺𝐸 ,𝐺𝐷 ,𝐸
max

𝐷
L𝑎𝑑𝑣 + 𝛼 · L𝑐𝑜𝑛 + 𝛽 · L𝑒𝑛𝑐 , (11)

where 𝛼 and 𝛽 are weighting parameters to trade-off the impact of

individual losses.

After training, we assume that when an unrealistic pattern image

𝑋 is fed into the trained generator, 𝐺𝐷 cannot generate the unre-

alistic patterns even though 𝐺𝐸 manages to map 𝑋 into the latent

vector space. This is because the generator has learned styles and

features of the realistic layout only, and its parametrization is not

suitable for reconstructing unrealistic features. Then, the 𝐸 (𝐺 (𝑋 ))

from encoder 𝐸 will also miss unrealistic feature representation,

leading to a dissimilarity between 𝐺𝐸 (𝑋 ) and 𝐸 (𝐺 (𝑋 )). Based on

the dissimilarity, we can classify 𝑋 as an unrealistic pattern. More

specifically, we define a pattern anomaly score as

score(𝑋 ) = | |𝐺𝐸 (𝑋 ) − 𝐸 (𝐺 (𝑋 )) | |1 . (12)

The pattern 𝑋 is considered to be realistic, when the score(𝑋 ) satis-
fies Equation 13 as follows:

score(𝑋 ) < T, (13)

where T is a user-defined threshold value. A smaller T implies a

stricter metric.

7 EXPERIMENTAL RESULT

We implement our flows including pattern generation, legalization

and style detection with Python and PyTorch library [19]. The

framework is tested on a platform with a TITAN V Graphic Card.

For the benchmark, we get small layout patterns by splitting a

160 × 400𝜇𝑚2
layout from ICCAD contest 2014 [25]. After filtering

out parts of patterns that maintain little information, we build a

dataset including 13869 layout pattern images with size of 2.048 ×
2.048𝜇𝑚2

. 3000 of these patterns are regarded as the testing data,

while others are in the training set. In our experiments, each layout

pattern is represented as a lossless image with 2048 × 2048 pixels,

which is then extracted to a squish pattern including one topology

matrix and two geometry vectors. Each squish pattern topology is

zero-padded to a matrix of size 128 × 128.

VCAE and the style detection model are trained with the above

training set. LegalGAN is trained with pairs of topologies of training

patterns and decoded topologies by the trained VCAE model. After

training, CUP (VCAE + LegalGAN) will be applied to generate new

patterns based on the existing patterns in the training set. The

testing set is used for validating the trained pattern style detection

model.

7.1 Results on Pattern Generation

In this subsection, we show experimental results of our pattern

generation framework by the VCAE + LegalGAN model. First we

randomly choose 100 existing patterns as the basic patterns. With

each method, 100000 patterns are generated by perturbing latent

representations of the 100 basic patterns with random Gaussian

noise as shown in Equation 3, where the variance 𝑐2 is set to 0.5.

After that, we use the KLayout to check the legality of the generated
patterns based on the design rules described in Section 2.2, and

obtain the generated legal patterns.

To demonstrate the contribution of our VCAE model, we com-

pare the pattern diversity between VCAE (+ LegalGAN) and a

baseline which is a vanilla convolutional auto-encoder (CAE) (+
LegalGAN) with similar scale of network weights. Besides, the

number of iterations in LegalGAN is set to 100.

Table 2 shows the comparison of pattern diversity (H ) and the

number of legal patterns among different pattern generation meth-

ods. Existing patterns consisting of both training and testing data

are all legal patterns. All the 4 methods generate new patterns

based on the 100 basic patterns. The existing patterns are highly

diversified, while the 100 basic patterns have low pattern diversity

because they only share parts of knowledge of the whole pattern set.
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Table 2: Comparison of evaluation metrics among different

methods.

Set/Method

All patterns Legal patterns

Pattern # Diversity (H) Pattern # Diversity (H)

Existing patterns 13869 10.7767 - -

Basic patterns 100 6.6039 - -

CAE 100000 4.5875 19 3.7871

VCAE 100000 10.9311 2126 9.9775

CAE+LegalGAN 100000 5.8465 3740 5.8142

CUP(VCAE+LegalGAN) 100000 9.8692 84510 9.8669

1
Pattern# means the number of patterns.

We observe that our CUP (VCAE + LegalGAN) model can expand

the low-diversified basic patterns to a legal and high-diversified

pattern library with 𝐻 = 9.8669, while CAE + LegalGAN generates

a lower-diversified library with 𝐻 = 5.8142. This demonstrates that

our pattern topology generation model VCAE has the ability of

generating diverse layout patterns.

On the other hand, although the patterns generated by VCAE

without legalization obtain the highest pattern diversity, most of

them suffer from DRC violations and need to be filtered out, which

leads to a low generation efficiency. Meanwhile, the LegalGAN

model can legalize most of such illegal patterns to legal ones, and

finally CUP (VCAE + LegalGAN) gets 84510 patterns with high

pattern diversity 𝐻 = 9.8669.

7.2 LegalGAN Validation
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Figure 9: The number of DRC violations and the proportion

of legal patterns in the process of legalization by LegalGAN.

In this subsection, we further demonstrate the ability of our

LegalGAN for removing DRC violations by making the generated

patterns smooth. By the VCAE, we generate 100000 raw pattern

topologies, which are then legalized by the LegalGAN in 100 it-

erations. Figure 9 shows the number of DRC violations and the

proportion of legal patterns in different iterations. We observe that

the legalization process converges after 30 iterations and produces

a large proportion of legal patterns. Specifically, 97.39% DRC viola-

tions are removed (from 688584 to 17959). Note that there may be

many DRC violations in a single pattern. Besides, the proportion

of legal patterns in the total changes from 2.1% to 84.5%, which

manifests the effectiveness of our LegalGAN model.

Table 3 gives a visualization of how raw patterns progressively

becomemore and more smooth during the the topology legalization

process of our LegalGAN. In this experiment, we choose an existing

pattern, and generate 3 raw patterns by VCAE. Then, the raw pat-

terns are legalized recursively, and Table 3 shows the legalization

results of the first several iterations of LegalGAN. We can observe

that LegalGAN has the ability of removing blurry flaws, which can

reduce the DRC violation risks intuitively.

7.3 Results on Pattern Style Detection

In this subsection, we verify the validity of our trained pattern

style detection model that is expected to provide a detection score

for each testing pattern. A smaller detection score implies a more

realistic pattern. Then, based on this tool, we demonstrate the ability

of our pattern generation framework to generate realistic layout

patterns.

In this experiment, we have designed 8 different pattern sets,

each of which contains 3000 different layout patterns. The first set

is the above testing set, in which the patterns are regarded as real-

istic patterns. The second set contains random patterns which are

randomly generated but still satisfying the design rules described in

Section 2.2. The third set, named distraction set, is extracted from

another actual layout of ICCAD contest 2014, in which the patterns

are also legal, but they maintain different pattern styles from the

testing set. The other sets are mixed sets obtained by mixing the

testing patterns and distraction patterns with different proportions,

as shown in Figure 10. For example, Figure 10d shows a pattern

that is mixed with 99.05% (area) testing pattern and 0.95% (area) dis-

traction pattern, where the regions in red boxes are the parts from

a distraction pattern. Intuitively, the pattern validity of the mixed

sets by Equation 7 would be larger when the ratio of distraction

patterns is smaller.

(a) Testing

pattern.

(b) Random

pattern.

(c) Distraction

pattern.

(d) 0.95%

distraction.

(e) 3.81%

distraction.

(f) 8.58%

distraction.

(g) 15.27%

distraction.

(h) 61.04%

distraction.

Figure 10: Testing pattern, random pattern, distraction pat-

tern, and mixed patterns.

As shown in Table 4, our trained pattern style detection model

predicts the pattern validity of the above 8 datasets. In this table,

T is the validity threshold defined in Equation 13, and a smaller

T implies stricter a metric. We observe that the pattern validity

of testing patterns is large, while the pattern validity of random
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Table 3: Visualization of the LegalGAN process.

Existing

pattern

Generated

patterns

Legalized patterns

Iteration 1 Iteration 3 Iteration 5 Iteration 7 Iteration 9

Table 4: Pattern validity comparison between different

mixed dataset for verifying pattern style detection.

Pattern Set Pattern #

Pattern Validity (V )
T = 0.6 T = 0.7 T = 0.8

Testing patterns 3000 0.6493 0.8485 0.9306

Random patterns 3000 0 0 0.007

Distraction patterns 3000 0.0119 0.0143 0.0246

0.95% distraction 3000 0.5981 0.8236 0.9198

3.81% distraction 3000 0.4227 0.6943 0.8536

8.58% distraction 3000 0.0710 0.2204 0.4371

15.27% distraction 3000 0.0058 0.0365 0.1041

61.04% distraction 3000 0.0003 0.0041 0.0191

Table 5: Pattern validity comparison between different

methods.

Set/Method Pattern #

Pattern Validity (V )
T = 0.6 T = 0.7 T = 0.8

Testing patterns 3000 0.6493 0.8485 0.9306

CAE+LegalGAN 2126 0.0003 0.0027 0.0167

CUP(VCAE+LegalGAN) 84510 0.5430 0.7840 0.9057

patterns and distraction patterns is close to 0. For the mixed sets, if

the ratio of distraction patterns is smaller, the pattern validity of

the sets will be larger, which agrees with our intuition. Such results

show that the trained pattern style detection model has the ability

of checking the layout style of new patterns.

Finally, to evaluate the ability of our CUP (VCAE + LegalGAN)

framework for generating realistic patterns, based on the trained

pattern style detection model, we compute the pattern validity of

generated legal patterns by different methods. The legal patterns

are obtained from the 100000 generated patterns as described in

Section 7.1. Table 5 shows the comparison results on pattern validity.

We observe that the CAE + LegalGAN hardly generates realistic

patterns, while CUP (VCAE + LegalGAN) produces legal patterns

with high pattern validity. Besides, the pattern validity of the legal

patterns generated by CUP (VCAE + LegalGAN) is close to that

of the existing patterns in the testing set. Therefore, our pattern

generation framework has ability of generating a DRC-clean pattern

library with both high pattern diversity and high pattern validity.

8 CONCLUSION

In this work, we address the pattern library generation problem

for DFM flows/researches based on different generative learning

technologies. We propose a VCAE model that captures both pattern

styles and features, which inspires a pattern topology generation

flow with perturbation in the latent Gaussian representation space.

We also design a pattern topology tool, named LegalGAN, to make

the generated patterns smooth and DRC-clean. Besides, a pattern

style detection tool is developed to check if the generated and legal-

ized patterns are realistic, which also helps filtering the generated

patterns to ensure the quality of the new pattern library. Our exper-

iments show that our flow can generate legal patterns with high

pattern validity and high pattern diversity.
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